
OLSAVS: A NEW ALGORITHM FOR MODEL SELECTION

by

Nicklaus T. Hicks

Honors Thesis

Appalachian State University

Submitted to the Department of Mathematical Sciences
in partial fulfillment of the requirements for the degree of

Bachelor of Science

December, 2022

Approved by:

Hasthika Rupasinghe, Ph.D., Thesis Director

Lasanthi Watagoda, Ph.D., Second Reader

William J. Cook, Ph.D., Honors Director, Department of Mathematical Sciences

Eric S. Marland, Ph.D., Chair, Department of Mathematical Sciences

Abstract

The shrinkage methods such as Lasso and Relaxed Lasso introduce some bias in order to reduce the

variance of the regression coefficients in multiple linear regression models. One way to reduce bias

after shrinkage of the coefficients would be to apply ordinary least squares to the subset of predictors

selected by the shrinkage method used. We extensively studied this idea in this work and developed a

new variable selection algorithm. We named this technique OLSAVS (Ordinary Least Squares After

Variable Selection). We have implemented the OLSAVS algorithms in R. Simulations were used

to illustrate that the new method is able to produce better predictions with less bias for various error

distributions. We compare the OLSAVS method with a few widely used shrinkage methods in terms of

their achieved test root mean square error and bias.

Acknowledgments

My deepest gratitude goes to the Appalachian State University mathematics department for providing

me with the knowledge to accomplish a milestone such as this. I wish to extend my gratitude to my thesis

director, Dr. Hasthika Rupasinghe, for his continuous support and guidance throughout this thesis.

Without his help, this would not be possible. An additional sincere thanks to my second reader, Dr.

Lasanthi Watagoda, for taking the time out of her schedule to analyze this paper. Furthermore, I wish

to acknowledge my honors director, Dr. William J. Cook, for providing me with this opportunity to

express my knowledge.

Finally, I would like to extend my sincere gratitude to all of my family and friends for all the support

received throughout this process.

Contents

1 Introduction 1

1.1 MLR model in matrix notation . 1

1.2 Estimation of Regression Coefficients . 2

1.2.1 Estimating simple liner regression model coefficients 2

1.2.2 Estimating MLR model coefficients . 5

1.2.3 Fitted Values and Residuals . 5

1.3 Variable selection . 7

1.3.1 Ridge regression . 7

1.3.2 Lasso . 8

1.3.3 Relaxed Lasso . 8

1.3.4 Elastic Net . 9

2 Method 9

2.1 Assessing Model Accuracy . 9

2.2 Cross Validation . 11

2.2.1 The Validation Set Approach . 11

2.2.2 Leave One Out Cross Validation (LOOCV) 12

2.2.3 k-Fold Cross-Validation . 13

2.3 Bias of a model . 14

2.4 Variance of a model . 15

2.5 Bias-Variance Trade off . 15

2.6 A new method for model selection: OLSAVS . 16

3 Simulation 17

3.1 Simulation setup . 17

3.2 Simulation results . 18

4 Real data example 30

5 R Package 31

5.1 Function descriptions . 31

6 Conclusions 34

Appendices 36

A R Package 36

5

1 Introduction

Suppose we have a response predictor Yi and p distinct predictors, then our multiple linear regression

model (MLR) takes the form of

Yi = β0 + β1X1 + β2X2 + ...+ βpXp + ϵ (1)

where Xj represents each predictor and βj represents the corresponding relationship between the

variable and response, with β0 representing the intercept. MLR is an important tool for this study and

helps lay a foundation for more complex models.

1.1 MLR model in matrix notation

MLR introduced in equation (1) can oftentimes become lengthy depending on the number of predictors.

Therefore, using matrix notation, we can write the multiple linear regression model in the form of

Y = Xβ + ϵ according to [8]. Analyzing this form,

Y n×1 =

Y1

Y2

...

Yn

(2)

Where Y is a n× 1 vector, and n is the sample size. The matrix X below,

Xn×p =

1 X11 X12 . . . X1,p−1

1 X21 X22 . . . X2,p−1

...
...

...
...

1 Xn1 Xn2 . . . Xn,p−1

(3)

is a n× p matrix of predictors. Then, β,

1

βp×1 =

β0

β1

...

βp−1

(4)

is an unknown p x 1 vector of coefficients, and ϵ,

ϵn×1 =

ϵ1

ϵ2

...

ϵn

(5)

is n× 1 vector representing the random error in each predictor.

Note that Y and ϵ are the same as for simple linear regression. The β vector contains additional

regression parameters, and the X matrix contains a column of 1’s as well as a column of n observations

for each p − 1 explanatory variable in the regression model. Additionally, the row subscript for each

element in Xik in the matrix, X represents the trial/case, and the column subscript identifies the X

variables. See [1].

1.2 Estimation of Regression Coefficients

This section closely follows [4] and covers the theory for estimating simple linear and MLR regression

model coefficients.

1.2.1 Estimating simple liner regression model coefficients

Consider the simple linear regression model where there is only one predictor variable and this function

is linear, we can describe this model below,

Yi = β0 + β1Xi + ϵi (6)

2

Where,

Yi is the value we obtain of the response variable in the ith trial

β0 and β1 are parameters that are defined in section 1.2 through the least squares method

Xi is a known constant that represents the value of the predictor variable in the ith trial.

ϵi represents the random error in the mean with mean 0 and variance σ2

Additionally we can expand equation (6) below,

Y n×1 =

Y1

Y2

...

Yn

(7)

Where Y is a n x 1 vector with n being the number of response variables. Next, we look at the

matrix X ,

Xn×2 =

1 X1

1 X2

...
...

1 Xn

(8)

Following this we have vectors for β and ϵ respectively,

β2×1 =

β0
β1

 (9)

ϵn×1 =

ϵ1

ϵ2

...

ϵn

(10)

3

In order to perform any kind of statistical testing, we must first understand and describe the regres-

sion coefficients. These coefficients are parameters in the regression model and are typically described

as β0 and β1. The β1 represents the slope of the regression line and β0 represents the y-intercept in the

line.

However, in many cases, the values for these two parameters are not known. Therefore, we must

estimate these values. We will estimate these values through either observational data or experimental

data.

In order to estimate values for β0 and β1, we will use the least squares method. By using observations

in a data set (Xi, Yi), we can build a formula that considers the deviation of Yi from its expected value,

Yi − (β0 + β1Xi) (11)

Now, we can build off equation (11) and consider the sum of n squared deviations. We will use Q

to define this,

Q =

n∑
i=1

(Yi − β0 − β1Xi)
2 (12)

In equation (12), we will estimate β0 and β1 with b0 and b1, which are values that help minimize Q

for n sample observations.

The idea for least squares is to find the estimate values, b0 and b1, for the parameters that help

minimizeQ. We can find these estimates in two ways, through numerical search procedures or analytical

procedures. By using the analytical procedure, we can show that b0 and b1 that minimize Q are given

by the following,

∑
Yi = nb0 + b1

∑
Xi (13)

∑
XiYi = b0

∑
Xi + b1

∑
X2

i (14)

where these two equations are known as normal equations and b0 and b1 are known as the point

estimators for β0 and β1. Now, we can solve equations (13) and (14) for b0 and b1,

4

b1 =

∑
(Xi − X̄)(Yi − Ȳ)∑

(Xi − X̄)2
(15)

b0 =
1

n
(
∑

Yi − b1
∑

Xi) = Ȳ − b1X̄ (16)

Here, X̄ and Ȳ are the means of the Xi and Yi observations.

1.2.2 Estimating MLR model coefficients

Extending equation (12) using the MLR model in equation (1) we get;

Q =
n∑

i=1

(Yi − β0 − β1Xi1 − . . .− βp−1Xi,p−1)
2 (17)

In this equation, the least squares estimators are β0, β1, . . . , βp−1, which help minimize Q. However,

the least squares estimated regression coefficients b0, b1, . . . , bp−1, where b,

bp×1 =

b0

b1

...

bp−1

(18)

where the least squares normal equations for the general linear regression model are,

X ′Xb = X ′Y (19)

and the least squares estimators are,

bp×1 = (X ′X)−1X ′Y (20)

1.2.3 Fitted Values and Residuals

Let Ŷ be a vector of fitted values and the vector of residuals ei = Yi − Ŷi be represented by e:

5

Ŷ n×1 =

Ŷ1

Ŷ2

...

Ŷn

(21)

en×1 =

e1

e2

...

en

(22)

Where the fitted values are represented by,

Ŷ n×1 = Xb (23)

since,

Ŷ1

Ŷ2

...

Ŷn

=

1 X1

1 X2

...
...

1 Xn

β0
β1

 =

b0 + b1X1

b0 + b1X2

...

b0 + b1Xn

(24)

and the residual terms by,

en×1 = Y − Ŷ = Y −Xb (25)

The residual value represents the difference between the observed response value and the value

predicted by the specific model being used. Now we can define the residual sum of squares (RSS) as

follows,

6

RSS = e1
2 + e2

2 + . . .+ en
2 (26)

or expanded as,

RSS = (y1 − β̂0 + β̂1X1)
2 + (y2 − β̂0 + β̂1X2)

2 + . . .+ (yn − β̂0 + β̂1Xn)
2 (27)

where the least squares method mentioned previously helps determine β0 and β1 to minimize the

RSS.

1.3 Variable selection

Variable selection is the search for a subset of predictor variables that can be deleted with little loss

of information, and so the model with the remaining predictors is useful for prediction. The variable

selection methods being looked at in this study are the following, Ridge regression, Lasso, Relaxed

Lasso, and Elastic Net models.

1.3.1 Ridge regression

According to [3], similar to least squares, ridge regression finds the best coefficients to make the RSS

small. Ridge Regression coefficient estimates β̂R, are values that minimize,

n∑
i=1

(yi − β0 −
p∑

j=1

βjxij)
2 + λ

p∑
j=1

β2 = RSS + λ

p∑
j=1

β2j (28)

Where λ ≥ 0 is a tuning parameter. The second term in the equation,

λ

p∑
j=1

β2j (29)

is known as the shrinkage penalty. This penalty value is small when β1, ..., βp are close to zero,

sending the βj values to zero but never reaching zero. For this reason, ridge regression includes all

predictors p in the model.

7

1.3.2 Lasso

Another method for estimating β is known as Lasso regression, which contains qualities similar to ridge

regression models. Lasso improves on one specific that ridge does not. Lasso sets variables to zero,

unlike ridge. See [7]. The Lasso coefficients,

β̂λ
L
,minimizes the quantity (30)

RSS + λ

p∑
j=1

|βj | (31)

Where RSS is given in equation (26).

1.3.3 Relaxed Lasso

Relaxed Lasso, according to [5] controls model selection and shrinkage estimation by two separate

parameters λ and ϕ. The Relaxed Lasso estimator is defined for λ ∈ [0,∞) and ϕ ∈ (0, 1] as

β̂
λ,ϕ

= argmin
β
n−1

n∑
i=1

(Y i −XT
i {β · 1Mλ

})2 + ϕλ|β|1 (32)

Where Mλ is the indicator function on the set of variables M ⊆ {1, ..., p} so that for all k ∈

{1, . . . , p}

β · 1Mλ
=

0 k ̸∈ Mλ

βk k ∈ Mλ

Relaxed Lasso is a generalization from Lasso. Unlike Lasso, the Relaxed Lasso takes into account

two regularization parameters. This method produces not only Lasso solutions but also a least-squares

solution that controls the regularization applied to the selected variables.

8

1.3.4 Elastic Net

As explained in [10], given data (y,X) and penalty parameters (λ1,λ2) and some augmented data (y∗,

X∗) the naı̈ve Elastic Net model takes the following form,

β̂
∗
= argmin

β∗
|y∗ −X∗β∗|2 + λ1√

(1 + λ2)
|β|1 (33)

This form of the Elastic Net solves a Lasso-type problem, where the corrected Elastic Net estimates

β̂ are defined as,

β̂(elastic net) =
√

(1 + λ2β̂
∗

(34)

and β̂(naı̈ve elastic net) = 1/
√
1 + λ2 β̂

∗
then,

β̂(elastic net) = (1 + λ2)β̂(naı̈ve elastic net). (35)

This then shows that our Elastic Net model takes form from a rescaled naı̈ve Elastic Net. Addi-

tionally, the scaling factor (1 + λ2) comes from a decomposition of the Ridge operator. However, this

is outside the scope of this paper but does give insight into how the Elastic Net model includes Ridge

regression as well.

Lastly, Elastic Net (Enet) regression is another method of variable selection. This model takes into

account two regularization parameters. These two parameters come for the Lasso and Ridge models.

Therefore, Elastic Net does produce variables equal to zero. In many cases, Elastic Net is better to use

than Lasso or Ridge, because in this scenario you do not have to choose between the two.

2 Method

2.1 Assessing Model Accuracy

In statistical learning, it is key to determine the model’s accuracy with some value and decide which

method works better. This metric is called the Mean Squared Error (MSE), and we will use this measure

to represent the extent to which the predicted response value is close to the true response value for a

9

Figure 1: Left: Data simulated from f, shown in black. We estimate f with the following: the linear
regression line (orange curve), and two smoothing spline fits (blue and green curves). Right: Training
MSE (grey curve), test MSE (red curve), and minimum possible test MSE over all methods (dashed
line). Squares represent the training and test MSEs for the three fits shown on the left.

given observation. The MSE is given by the formula,

MSE =
1

n

n∑
i=1

(yi − f̂(xi))
2 (36)

Where f̂(xi) is the prediction that f̂ gives for the ith observation. This value will be small if the

predicted values are close to the true values. See [1].

Although we would like this value to be small for training data, the key value will come from the

test MSE as shown below in figure 1,

Here we see a data set fitted with three different models. Based on the first judgment it appears the

green cubic spline fits the data best. However, on the right, we can see how the training and test MSE

values compare. Notice that the green square represents the respective cubic line in the left image. Here

we can see that although this line has a very low training MSE, the test MSE is noticeably high. This

specific scenario is known as over-fitting and happens when we a model fits the data too closely. In this

particular case, it is actually the blue line that fits the model the best, and we can look at our test MSE

to help prove this.

10

Figure 2: A display of the validation set approach provided in [1]. A set of n observations are randomly
split into a training set (shown in blue, containing observations 7, 22, and 13, among others) and a
validation set (shown in beige, and containing observation 91, among others). The statistical learning
method is fit on the training set, and its performance is evaluated on the validation set.

2.2 Cross Validation

Thus far, we have learned how to predict model accuracy, and what variable helps us determine this

measure. Both the training MSE and test MSE are useful pieces of information, but we determined that

the test MSE would be the most beneficial in determining model accuracy. However, in many cases, we

are unable to perform a test MSE calculation on a designated test set. Instead, we use methods to help

gather an estimate for this error rate by using the training data. In particular, we will hold out a subset of

the training observations from the fitting process, and then apply the statistical method to those held-out

observations. We will focus on two main forms of cross-validations, “Leave One Out Cross Validation

(LOOCV)” and “k-Fold Cross-Validation”.

2.2.1 The Validation Set Approach

When looking for a test error associated with fitting a statistical learning method on a specific set of

observations, the validation approach is a simple strategy for this. This approach involves randomly

dividing the observations into two sets, a training set and a validation set (hold-out set). We can see how

this split is performed in figure 2.

We fit the model on the training set and then use the fitted model to predict the observations in the

validation set. The MSE produced from the estimated validation set provides an estimate for the test

error rate.

We can also see how the validation set works graphically. By using a data set in R, we can show

11

Figure 3: The validation set approach was used on a data set to estimate the test error for a response
variable using polynomial functions of an explanatory variable. Left: Validation error estimates for a
single split into training and validation data sets. Right: The validation method was repeated ten times,
each time using a different random split of the observations into a training set and a validation set. This
shows the variability in the test MSE. See [1]

how the validation set error rates result from fitting various regression models on the training set. Then,

evaluate their performance on the validation set, using MSE as a measure of test set error. In figure 3, on

the left, we can see that the validation set error is noticeably smaller for a quadratic fit than a linear fit.

However, increasing the fit to the cubic term results in a larger MSE. This showing that adding a higher

polynomial term does not result in a better fit. Likewise, the figure on the right shows the same dataset

performing ten random splits of the observations into training and test sets. Still, in every split, we can

see the drastic drop in test set error from a linear fit to a quadratic fit. Furthermore, showing that higher

polynomial fits do not benefit the model much.

Although this approach is beneficial in many ways, there are a couple of drawbacks. These include

high variability and over-fitting. Since the method is looking to perform the best on the data set, it may

try to include too many variables and overestimate. See [1] for more details.

2.2.2 Leave One Out Cross Validation (LOOCV)

Similar to our previous validation approach, Leave One Out Cross Validation (LOOCV), attempts to fix

some of the issues mentioned for the validation set approach. In this approach, we will still split the

data into training and test sets. However, instead of making the two sets comparable in size, we will

now remove one observation and allow it to be the validation set with the remaining sets making up the

12

Figure 4: A display of LOOCV provided in [1]. A set of n data points is repeatedly split into a training
set (blue) containing all but one observation,and a validation set that contains only that observation
(beige). The test error is then estimated by averaging the MSE’s, n times. The first training set contains
all but observation 1, the second training set contains all but observation 2, and so forth

training set. Figure 4 gives a nice visualization of how this split is performed,

Unlike the previous validation approach and using a single estimate for the test MSE, the LOOCV

estimate for the test MSE is the average of the n test error estimates shown in the formula,

CV(n) =
1

n

n∑
i=1

MSEi (37)

According to [1], LOOCV, also has a couple of advantages over the validation set approach. First,

this method is less-bias since LOOCV uses n−1 training observation sets which nearly cover the entire

data set. Secondly, LOOCV tends to not overestimate the test error rate as much as the validation set

approach.

2.2.3 k-Fold Cross-Validation

The last validation approach we have is k-fold CV . This approach is still similar to the other by forming

training and validation sets, but now these sets are split into k groups, or folds of the same size. The

first fold will be treated as the validation set, where the remaining k-1 folds fit with our method. Figure

5 shows an example of a 5-fold cross-validation,

13

Figure 5: A display of 5-fold CV provided in [1]. A set of n observations is randomly split into five non-
overlapping groups. Each of these fifths acts as a validation set (shown in beige), and the remainder as
a training set (shown in blue). The test error is estimated by averaging the five resulting MSE estimates.

To test the accuracy for the k-1 approach, we compute the MSE for each held-out observation.

Since we have k folds, this operation will be produced k times. The k-1 fold estimate is computed by

averaging these values,

CV (k) =
1

k

k∑
i=1

MSEi (38)

Typically, we will only use k = 5 folds or k = 10 folds. This is due to the time it takes to compute

each of these estimates. We can see how k fold validation compares to simulated data through the figure

6.

Here we can see how both methods compare to the test MSE. Including one case where both under-

estimate the true MSE. Although this underestimate is shown, it is beneficial to see, because in some

cases locating the minimal point for the estimated curve is used to compare with other methods to

determine which is best.

2.3 Bias of a model

The bias for a statistical machine learning model can be described as systematic error that occurs in

the model when the model draws incorrect assumptions of the data in the modeling process according

14

Figure 6: True and estimated test MSE for simulated data sets provided in [1]. The true test MSE is
shown in blue, the LOOCV estimate is shown as a black dashed line, and the 10-fold CV estimate is
shown in orange. The crosses indicate the minimum of each of the MSE curves.

to [9]. Bias is often referred to as the error that is introduced by approximating a real-life scenario.

Additionally, bias in a model can also describe how closely our model follows our training data. Higher

bias resembles a low-fitting model, low bias resembles a close-fitting model.

2.4 Variance of a model

Variance in a model is best described as a value in which the model changes when introduced to different

values in the training set. Running the model on different training sets will result in different values for

the variance, however, this value should not change too much between sets. Variance tends to correlate

directly to complexity in a model. A model with high variability relates to a more complex model,

whereas a less complex model tends to have low variability. See [1]

2.5 Bias-Variance Trade off

Referring back to the test MSE mentioned in 2.1, we can form an equation using the bias and variance

to measure the expected test MSE. This equation is shown below,

E(y0 − f̂(x0))
2 = V ar(f̂(x0)) + [Bias(f̂(x0))]

2 + V ar(ϵ) (39)

Where E(y0 − f̂(x0))
2 defines the expected test MSE at X0. Equation (39) shows that in order to

15

Figure 7: Squared bias (blue curve), variance (orange curve), Var(ϵ) (dashed line), and test MSE (red
curve) for the three given data sets. The vertical dotted line shows the flexibility level that results in the
smallest test MSE.

make the test MSE small, two things are required. The model requires both low variance and low bias

in order to obtain a low MSE.

When computing machine learning models, to determine the best model, Bias and Variance are

typically two points that are examined. The goal is to get low bias and variance to create the best model

for the data. However, one contradicts the other, and this is known as the bias-variance trade-off. When

we get a model that has high variability, that model has low bias. In the same manner, a model with

low variability has high bias. Determining a point where the model performs well for both bias and

variability is one of the main goals for all learning models. The graphs in figure 7 help us understand

this trade-off better.

Notice, in each of the three graphs, there is a distinct point where the test MSE is the smallest.

At this point, there is a corresponding variance and bias level for each graph, giving us some sort of

indication of what type of model is being performed.

2.6 A new method for model selection: OLSAVS

The shrinkage methods such as Lasso and Relaxed Lasso introduce some bias in order to reduce the

variance of the regression coefficients. As briefly mentioned in [2], one way to reduce bias after

shrinkage of the coefficients would be to apply ordinary least squares to the subset of predictors se-

16

lected by the shrinkage method used. In this work, we extensively study this idea to develop a new

variable selection algorithm. We name this technique Ordinary Least Squares After Variable Selec-

tion (OLSAVS). We have implemented OLSAVS method in R. The set of functions can be found at

https://hasthika.github.io/olsvspack.txt. The algorithm of the OLSAVS method is

as follows:

Algorithm: Ordinary Least Squares After Variable Selection (OLSAVS)

Repeat: following steps with a different shrinkage method

1) Apply the first shrinkage method to (Yi,xi) for i = 1, ..., n.

2) Obtain the k non-zero predictors selected by the shrinkage method in 1)

3) Apply Ordinary Least Squares on the subset of k predictors obtained in 2)

Stop

4) Select a single best model using cross-validated prediction error, Cp , (AIC), BIC, or adjusted R2

3 Simulation

3.1 Simulation setup

We used R to generate (Yi,xi) for i = 1, ..., n. The regression parameters β were set to (1, 1, . . . , 1,

0, . . . , 0) with k + 1 ones, p − k − 1 zeroes where p is the total number of predictors, and k is the

number of non-trivial predictors. Then for a given regression method, the regression coefficients, β̂

were obtained using the proposed method. This process was repeated 5000 times (runs). For each run,

the difference between the regression parameters β and the regression coefficients, β̂ were obtained

using the Minkowski distance. The average difference (Diff) was calculated by averaging all 5000 runs.

The root MSE was also obtained using a test of observations for each run that was averaged of the 5000

runs (TRMSE). We used p = n/5, n/2, or n − 1 as the total number of predictors and k = 1, 19, or

p − 1 as the number of non-trivial predictors in the model. As per the easiness of coding we used the

relation cor(xi, xj) = ρ = (2ψ + (p− 3)ψ2)/(1 + (p− 2)ψ2), for i ̸= j, where, xi, xj are non-trivial

predictors. As ψ increases the correlation between preceptors, ρ grows. We used ψ = 0, 0.3 or 0.9. We

considered five error distributions with zero mean.

17

1. The first distribution we used is the N(0, 1) which is commonly used in simulation studies.

2. As the second error distribution, we considered t3, one of the heavy-tailed distributions.

3. We also considered not very commonly used in simulations but found in many real-life situations,

a non-symmetric error distribution EXP(1)− 1.

4. We also used uniform(−1, 1), and

5. 0.9N(0, 1) + 0.1N(0, 100).

The simulation study was conducted in R. See [6].

3.2 Simulation results

(a) Table 1, Plot 1 (n = 100) (b) Table 1, Plot 2 (n = 200)

Figure 8: Box plots for table 1 showing simulation results for OLSAVS vs. Lasso regression with error
type 1.

For figure 8, we assembled box plots to compare the TRMSE results in table 1. For each of the

simulations tables, we will assemble two plots with n = 100 or n = 200 to compare the results. Here in

figure 8, we see that in either sample size, OLSAVS has a smaller median TRMSE and lower variation

in the results. However, it appears for this simulation, for Lasso with a normal error, that when the

sample size increases, so do the variation in the plot.

18

TRMSE Diff

n p k ψ OLSAVS Lasso OLSAVS Lasso

100 20 1 0 1.0478 1.021 0.01657 0.1449

100 20 1 0.3 1.0417 1.0199 0.1124 0.1549

100 20 1 0.9 1.0083 1.0057 0.6455 0.6635

100 20 19 0 1.1112 1.1107 0.0037 0.0122

100 20 19 0.3 1.1112 1.1377 0.0055 0.0158

100 20 19 0.9 1.1543 2.3451 1.5667 7.5674

100 50 1 0 1.0916 1.0369 0.0268 0.181

100 50 1 0.3 1.0708 1.0303 0.1654 0.2028

100 50 1 0.9 1.0142 1.0059 0.9511 0.5929

100 50 49 0 1.3973 1.4014 0.0043 0.0149

100 50 49 0.3 1.5522 4.353 0.0163 0.0557

100 50 49 0.9 2.1118 9.4775 8.8016 43.9716

200 40 1 0 1.0386 1.0175 0.0225 0.1208

200 40 1 0.3 1.0316 1.0157 0.1044 0.1327

200 40 1 0.9 1.0108 1.005 0.7825 0.4165

200 40 39 0 1.117 1.119 0.002 0.0095

200 40 39 0.3 1.117 2.5606 0.0028 0.0369

200 40 39 0.9 1.6985 6.8533 5.8545 32.8388

200 100 1 0 1.0691 1.0261 0.0354 0.1454

200 100 1 0.3 1.0605 1.0251 0.1392 0.1653

200 100 1 0.9 1.0184 1.0045 0.9712 0.0855

200 100 99 0 1.4495 1.4561 0.0034 0.0132

200 100 99 0.3 3.166 11.4553 0.1379 0.488

200 100 99 0.9 3.7274 27.9646 17.4699 93.9076

Table 1: TRMSE and difference values for Lasso for ei ∼ N(0, 1)

19

For table 1 we ran simulations to compare the OLSAVS method to Lasso regression. However, in

this particular simulation, we compared OLSAVS to a Lasso regression with a normal distribution error

type that has a mean of 0 and a variance of 1. Here, and for the remaining simulations, we will compare

the methods for n = 100, 200.

In table 1 the first trend we can begin to see occurs in the TRMSE for the simulations. In the

beginning, Lasso outperforms the method being proposed, and this occurs for the first trial where the

non-trivial predictors (k) are low. However, as this value increases for both the predictors and the

correlation among these predictors respectively, the OLSAVS method will eventually overtake the Lasso

regression for the TRMSE value. This trend will continue throughout table 1, but as the sample size

and non-trivial predictors increase, the distance between the OLSAVS and Lasso values gets noticeably

larger. In comparing the two, the OLSAVS stays consistent throughout for the TRMSE, where Lasso

has a lot of variability for this value.

Although the OLSAVS out-performed Lasso for certain cases, we need to analyze the table for the

difference (Diff) values computed using Minkowski distance. There is not any noticeable trend unlike

the TRMSE, but we can see that for small non-trivial predictors and high correlation values, the Lasso

regression either comes close or betters OLSAVS in the difference value here. Other than this certain

case, the new method significantly bettered the Lasso in table 1.

Figure 9 shows two simulation plots pulled from table 2. Looking at two cases, each varying in

sample size, we see that our method does edge out Lasso regression with the error type being from a

t-distribution. However, unlike 8 the variation in the plot now decreases as expected when the error type

increases.

Table 2 is a similar simulation approach to the previous table 1, however the error type in table 2

changes for the Lasso regression. The error type for table 2 will be a t-distribution with zero mean.

Analyzing the TRMSE for table 2, a trend begins to form as the number of non-trivial predictors

increases. The Lasso regression will outperform OLSAVS every time that the non-trivial predictor

k = 1. However, once we go from one extreme to another in our simulations, the TRMSE favors our

method once the non-trivial predictors are equal to p − 1. Additionally, as the correlation between the

non-trivial predictors increases, we can see a large distance increase between the two methods.

For the difference in table 2, it is hard to establish any consistent trends throughout. However, it is

notable that when n = 100, p = 50, and k = 1, 49 the Lasso slightly does better than the new method.

20

TRMSE Diff

n p k ψ OLSAVS Lasso OLSAVS Lasso

100 20 1 0 1.3677 1.3362 0.0260 0.1882

100 20 1 0.3 1.3551 1.3317 0.1497 0.2031

100 20 1 0.9 1.3178 1.3169 0.6539 0.7482

100 20 19 0 1.4441 1.4442 0.0047 0.0130

100 20 19 0.3 1.4441 1.4590 0.0061 0.0142

100 20 19 0.9 1.4487 2.4245 1.8395 7.2843

100 50 1 0.3 1.3704 1.3311 0.2075 0.2549

100 50 1 0.9 1.3060 1.3015 0.9523 0.6991

100 50 49 0 1.8360 1.8418 0.0076 0.0076

100 50 49 0.3 1.9877 4.4636 0.0245 0.0245

100 50 49 0.9 2.2778 9.6242 8.8102 43.9438

200 40 1 0 1.3453 1.3165 0.0351 0.1550

200 40 1 0.3 1.3324 1.3163 0.1351 0.1707

200 40 1 0.9 1.3075 1.3033 0.8243 0.5671

200 40 39 0 1.4351 1.4355 0.0036 0.0107

200 40 39 0.3 1.4351 2.5826 0.0048 0.0376

200 40 39 0.9 1.8981 6.7108 5.7510 32.8242

200 100 1 0 1.3837 1.3189 0.0460 0.1847

200 100 1 0.3 1.3559 1.3153 0.1774 0.2115

200 100 1 0.9 1.3096 1.2998 1.1920 0.2210

200 100 99 0 1.8397 1.8487 0.0058 0.0147

200 100 99 0.3 3.3891 11.4710 0.1501 0.4976

200 100 99 0.9 3.8424 27.4098 17.2990 93.9071

Table 2: TRMSE and difference values for Lasso for ei ∼ t3

21

(a) Table 1, Plot 1 (n = 100) (b) Table 1, Plot 2 (n = 200)

Figure 9: Box plots for table 2 showing simulation results for OLSAVS vs. Lasso regression with error
type 2.

Overall, the new method outperforms Lasso by a large majority.

Figure 10 shows boxplots gathered from two simulations in table 3. In the two plots shown, we see

yet again that OLSAVS edges out the Lasso and has a much shorter variation in the box plot. Lasso with

an exponential error does compete in the n = 100 plot but then has a much larger gap when the sample

size is increased.

In table 3 we will compare our method to Lasso again, but this time we will compare to the Lasso

regression with the error types being from the exponential distribution. Again, with a mean of zero, will

analyze the TRMSE and Diff for both methods.

Upon analyzing the TRMSE for both methods, we can see a very similar trend occurring. Much

like our simulations from table 2, as the non-trivial predictors are increased to p − 1 we can see our

method produces a lower TRMSE than Lasso. Additionally, the same gap occurs when the correlation

is increased for the p− 1 predictors as well.

The differences in table 3 appear to have no consistent trends. OLSAVS seems to dominate for

the majority of the difference values. Still, much like the previous simulations, there is this interesting

difference that occurs when the correlation between predictors is equal to 0.9 and k = 1. At this

particular point, Lasso does better than our method, but only at this point.

22

TRMSE Diff

n p k ψ OLSAVS Lasso OLSAVS Lasso

100 20 1 0 1.0589 1.0366 0.0208 0.1416

100 20 1 0.3 1.0287 1.0099 0.1123 0.1533

100 20 1 0.9 0.9913 0.9900 0.6264 0.6519

100 20 19 0 1.1055 1.1063 0.0033 0.0118

100 20 19 0.3 1.1055 1.1583 0.0046 0.0148

100 20 19 0.9 1.1335 2.3835 1.5415 7.5833

100 50 1 0 1.0948 1.0456 0.0232 0.1804

100 50 1 0.3 1.0767 1.0414 0.1689 0.2039

100 50 1 0.9 1.0263 1.0188 0.9343 0.5814

100 50 49 0 1.4078 1.4105 0.0045 0.0147

100 50 49 0.3 1.5744 4.3752 0.0153 0.0520

100 50 49 0.9 2.1137 9.5345 8.8138 44.0251

200 40 1 0 1.0298 1.0071 0.0202 0.1201

200 40 1 0.3 1.0202 1.0037 0.1063 0.1331

200 40 1 0.9 0.9969 0.9925 0.7664 0.4067

200 40 39 0 1.1034 1.1048 0.0026 0.0097

200 40 39 0.3 1.1034 2.4771 0.0035 0.0380

200 40 39 0.9 1.7076 6.7040 5.8761 32.8648

200 100 1 0 1.0522 1.0122 0.0371 0.0371

200 100 1 0.3 1.0356 1.0101 0.1402 0.1657

200 100 1 0.9 1.0067 0.9953 0.9636 0.0896

200 100 99 0 1.4138 1.4192 0.0037 0.0131

200 100 99 0.3 3.1658 11.2754 0.1451 0.4836

200 100 99 0.9 3.6705 27.4919 17.5606 93.9063

Table 3: TRMSE and difference values for Lasso for ei ∼ EXP(1)− 1

23

(a) Table 1, Plot 1 (n = 100) (b) Table 1, Plot 2 (n = 200)

Figure 10: Box plots for table 3 showing simulation results for OLSAVS vs. Lasso regression with error
type 3.

(a) Table 1, Plot 1 (n = 100) (b) Table 1, Plot 2 (n = 200)

Figure 11: Box plots for table 4 showing simulation results for OLSAVS vs. Lasso regression with error
type 4.

24

TRMSE Diff

n p k ψ OLSAVS Lasso OLSAVS Lasso

100 20 1 0 0.6087 0.5952 0.0112 0.0843

100 20 1 0.3 0.6024 0.5945 0.0662 0.0900

100 20 1 0.9 0.5905 0.5879 0.5773 0.4067

100 20 19 0 0.6360 0.6369 0.0023 0.0103

100 20 19 0.3 0.6360 0.9626 0.0031 0.0308

100 20 19 0.9 0.7599 2.3075 1.3762 7.8005

100 50 1 0 0.6265 0.5999 0.0177 0.1043

100 50 1 0.3 0.6169 0.5955 0.0943 0.1160

100 50 1 0.9 0.5917 0.5826 0.7318 0.2120

100 50 49 0 0.8221 0.8299 0.0028 0.0127

100 50 49 0.3 1.0467 4.3592 0.0121 0.0573

100 50 49 0.9 1.9089 9.4600 9.0251 44.0993

200 40 1 0 0.6078 0.5907 0.0127 0.0697

200 40 1 0.3 0.6016 0.5904 0.0604 0.0760

200 40 1 0.9 0.5886 0.5836 0.4935 0.1028

200 40 39 0 0.6506 0.6506 0.0013 0.0088

200 40 39 0.3 0.6506 2.5639 0.0018 0.0388

200 40 39 0.9 1.4729 6.8174 5.9630 33.0055

200 100 1 0 0.6130 0.5903 0.0123 0.0831

200 100 1 0.3 0.5967 0.5967 0.0898 0.0973

200 100 1 0.9 0.5902 0.5830 0.5646 0.0216

200 100 99 0 0.8125 0.8243 0.0021 0.0119

200 100 99 0.3 2.9615 11.3001 0.1460 0.4744

200 100 99 0.9 3.5458 27.3187 17.4181 93.9087

Table 4: TRMSE and difference values for Lasso for ei ∼ uniform(−1, 1)

25

(a) Table 1, Plot 1 (n = 100) (b) Table 1, Plot 2 (n = 200)

Figure 12: Box plots for table 5 showing simulation results for OLSAVS vs. Relaxed Lasso regression
with error type 1.

For table 4 in our Lasso simulations, we look at a Lasso regression with a uniform distribution error

type. Here in figure 11, the variation for each method is large, however, OLSAVS still has the smaller

average TRMSE. Once the sample size increases, both the variation and the average TRMSE shrinks

for each method, but the OLSAVS still maintains the advantage in each.

The last table we will analyze for Lasso regression is table 4. This table keeps the same ideas, but

again our distribution for the errors is changed. We will look at a uniform distribution this time with

zero mean.

Once again for our TRMSE simulations, the same trend appears between the OLSAVS and Lasso

estimates as before. However, this time we get an output where the two functions are equal for observa-

tion 16. Compared to the other simulations, this Lasso regression stands out since the other simulations

for this observation were larger than the OLSAVS value.

The difference for the simulations remains mostly the same as for our previous simulations for Lasso

with an exponential distribution. Here our method outperforms Lasso again, with the same occurrence

of only one certain scenario when the correlation between predictors is equal to 0.9 and k = 1.

Figure 12 shows our first boxplots for the Relaxed Lasso simulations with error type 1. Here in

26

TRMSE Diff

n p k ψ OLSAVS Lasso OLSAVS R Lasso

100 20 1 0 1.05004 1.03955 0.01180 0.04069

100 20 1 0.3 1.04307 1.03993 0.11183 0.11699

100 20 1 0.9 1.00809 1.00586 0.63942 0.67805

100 20 19 0 1.11518 1.11527 0.00315 0.00298

100 20 19 0.3 1.11518 1.12323 0.00384 0.00384

100 20 19 0.9 1.14518 1.44021 1.54564 7.55956

100 50 1 0 1.10563 1.08454 0.02597 0.05857

100 50 1 0.3 1.09096 1.08971 0.16601 0.16668

100 50 1 0.9 1.03093 1.02483 0.95682 0.60006

100 50 49 0 1.42151 1.42127 0.00415 0.00446

100 50 49 0.3 1.57851 3.89696 0.01567 0.01567

100 50 49 0.9 2.12296 4.80282 8.87674 45.66343

200 40 1 0 1.03855 1.03304 0.02126 0.02466

200 40 1 0.3 1.03295 1.03285 0.10517 0.10524

200 40 1 0.9 1.01005 1.00655 0.78436 0.42916

200 40 39 0 1.12531 1.12531 0.00267 0.00267

200 40 39 0.3 1.12531 1.80026 0.00386 0.12240

200 40 39 0.9 1.70105 3.57716 5.88467 33.41152

200 100 1 0 1.06191 1.05162 0.02599 0.03373

200 100 1 0.3 1.04883 1.04896 0.13610 0.13720

200 100 1 0.9 1.01643 1.00291 0.96788 0.96788

200 100 99 0 1.40641 1.40518 1.40518 0.00281

200 100 99 0.3 3.15561 10.08956 0.14074 0.92836

200 100 99 0.9 3.71833 9.86930 17.35998 97.95932

Table 5: TRMSE and difference values for Relaxed Lasso for ei ∼ N(0, 1)

27

these plots, we can see immediately that OLSAVS has the lower average TRMSE and variation. If the

sample size is increased, the same comparison results hold, while making the variation for OLSAVS

even smaller.

Table 5 introduces simulations using the Relaxed Lasso method. In this method comparison, we will

keep the same variables and simulation values while only changing the method in which we’re applying.

For the Relaxed Lasso simulations, we also will look at the same error types as the Lasso regression.

For table 5, we compare our method with a Relaxed Lasso regression with a normal distribution

error type. Again, our mean will remain zero and we compare the simulations results for TRMSE and

the average difference. Much like our results for Lasso regression, we see that Relaxed Lasso appears to

have the advantage when k = 1. However, once k is increased to p − 1 predictors, OLSAVS begins to

have the smaller TRMSE. Still, Relaxed Lasso is more competitive than Lasso for a normal distribution

error.

The differences for table 5 do not have much of a trend occurring. However, our method does

perform better than Relaxed Lasso for the majority of the simulations. Yet again, Relaxed Lasso does

compete well with the error type coming from a normal distribution. Our method does get beat in

various errors in the table, but no trends seem to appear in these spots.

Figure 13 shows simulation results between OLSAVS and Relaxed Lasso with error type 2. Figure

13 follows closely to the results from figure 12, but here both methods in figure 13 seem to contain

larger variation for error type 2. However, OLSAVS still maintains the lower quantities for the TRMSE.

By looking at the results in table 6, we are going to get almost the exact same trend for TRMSE

values as our values in table 5. Again, we see that Relaxed Lasso has the advantage in the TRMSE when

k = 1. However, once k is increased to p− 1 predictors, OLSAVS has the smaller test error value.

Lastly, our differences in table 6 show our method performing well once again for the bias values.

We can see that our method does compete with relxaed Lasso with error type 2, but judging on the

majority of simulations, our method wins outright. Additionally, we can see OLSAVS also provides

more consistent differences overall.

28

TRMSE Diff

n p k ψ OLSAVS Lasso OLSAVS R Lasso

100 20 1 0 1.36487 1.34437 0.02908 0.08346

100 20 1 0.3 1.34847 1.34209 1.34209 0.15530

100 20 1 0.9 1.30332 1.30211 0.62132 0.74412

100 20 19 0 1.44316 1.44326 0.00553 0.00605

100 20 19 0.3 1.44316 1.44720 0.00764 0.03972

100 20 19 0.9 1.43871 1.65548 1.83681 7.26831

100 50 1 0 1.44446 1.40636 0.03604 0.10807

100 50 1 0.3 1.41096 1.40477 0.20648 0.21225

100 50 1 0.9 1.34176 1.33864 0.95980 0.71164

100 50 49 0 1.85165 1.85164 0.00554 0.00698

100 50 49 0.3 2.00740 4.14320 4.14320 4.14320

100 50 49 0.9 2.31574 4.91246 8.71224 45.59930

200 40 1 0 1.33118 1.31585 0.03086 0.05388

200 40 1 0.3 1.31769 1.31472 0.13591 0.13865

200 40 1 0.9 1.29278 1.28860 0.84014 0.58889

200 40 39 0 1.44431 1.44436 0.00272 0.00272

200 40 39 0.3 1.44431 2.02409 0.00388 0.13289

200 40 39 0.9 1.91426 3.72937 5.77462 33.17816

200 100 1 0 1.35272 1.32707 0.04958 0.07102

200 100 1 0.3 1.33008 1.32910 0.18092 0.18116

200 100 1 0.9 1.28972 1.27810 1.19952 0.21588

200 100 99 0 1.80251 1.80167 0.00513 0.00464

200 100 99 0.3 3.31817 10.32727 0.14145 0.92488

200 100 99 0.9 3.76114 9.86319 17.36192 97.95763

Table 6: TRMSE and difference values for Relaxed Lasso for ei ∼ EXP(1)− 1

29

(a) Table 1, Plot 1 (n = 100) (b) Table 1, Plot 2 (n = 200)

Figure 13: Box plots for table 6 showing simulation results for OLSAVS vs. Relaxed Lasso regression
with error type 2.

4 Real data example

For this method, we will consider a Wisconsin nursing home data set provided by the Wisconsin De-

partment of Health and Family Services. The goal of this data set is to utilize nursing home capacity. In

the set we will look at the years of 2000 and 2001, with 362 and 355 facilities respectively. However,

10 observations were removed for containing missing values. Our data set contains 12 variables, with

total patient years (TPY) being our response variable.

To determine how our methods perform, we will split our data into testing and training sets. In the

sets, we will allocate 60% of the data to be in the training set and 40% to be in the testing set. We

will compute the TRMSE from this data set and compare the values of the OLSAVS method to those of

Lasso, Relaxed Lasso, and Elastic Net.

Below in table 7, we can see the results of using this real-world example. We can compare each of

these side-by-side results and see that the OLSAVS method edges out each of these for this real-world

example.

By analyzing table 7, it appears that OLSAVS does a nice job against the other common methods. If

we look at each individual comparison, it turns out that OLSAVS has the lower test error for any method

30

Method OLSAVS ENET OLSAVS Lasso OLSAVS Relaxed Lasso

TRMSE 7.956877 8.071371 8.007678 8.044224 8.007678 8.013652

Table 7: TRMSE comparison for OLSAVS vs. common methods using real data

we choose. This showing that OLSAVS does have some practicality as it is able to perform in real-world

scenarios.

5 R Package

In this section, we will briefly cover the R functions required to compute simulation results and plots

shown in section 3. With each of these functions, our goal was to compare the OLSAVS with a few most

common variable selection methods. Below, we will describe briefly what each of these functions do.

To load this package: use source("https://hasthika.github.io/olsvspack.txt")

5.1 Function descriptions

OLSAVS(x, y, method)

Where x is a matrix of predictors, y is the response variable we are searching for, and the method

determines what method we are applying OLSAVS with. Here the methods vary between Lasso, Ridge,

Relaxed Lasso, and Elastic Net models. After a preferred method is selected, we will apply ordinary

least squares to this model and gather a new model which will be the OLSAVS model.

OLSAVSPredict(model, newx)

This function will give us a vector of predictions (ŷ) for an OLSAVS model. ‘OLSAVSPredict‘ will

use the OLSAVS model and an argument newx, where newx is a matrix x values.

olsafterlrsim(n, p, k, nruns, psi, type, alpha, pitype)

This function was used to create Tables 1 through 6. This function requires the following arguments,

n representing our sample size for the simulation, p, the number of predictors in the model, k as the

number of non-trivial predictors in the model, nruns represents the number of simulations we run the

model on, ψ as the correlation between non-trivial predictors, type defines the error distribution our

model and rival model will use, and lastly, pitype represents which model we will compare our method

31

to. This could fall under Lasso, Ridge, Relaxed Lasso, or Elastic Net. This function results in four

different outputs. Function outputs the TRMSE value for OLSAVS and the method selected, but also the

difference between the estimated and the actual regssion coefficients computed by using the Minkowski

distance.

olsafterlrsimplots(n, p, k, nruns, psi, type, alpha, pitype)

This function is very similar to olsafterlrsim(), however, this code now includes an output that

produces plots. These plots produced show a side-by-side box plot of the TRMSE values for both

methods defined in the code. The same variables are used here as in olsafterlrsim().

Example

library(ISLR)

library(lars)

library(readr)

Wisc <- read_csv("WiscNursingHome (1).csv")

Wisc <- na.omit(Wisc)

set.seed(1008)

############ Splitting and preparing data #####################

train = sample(c(TRUE, FALSE), size = 0.6*nrow(Wisc), replace = TRUE)

test <- (!train)

xtrain <- model.matrix(TPY˜., Wisc)[train,]

xtest <- model.matrix(TPY˜., Wisc)[test,]

ytrain <- Wisc$TPY[train]

ytest <- Wisc$TPY[test]

32

y <- ytrain

x <- xtrain

##################### Applying OLSAVS ###########################

Method - Lasso, RR, Enet or Relaxed Lasso (method = 1, method = 0,

method = 0.5 or method = 2)

mod <- OLSAVS(x, y, method = 0.5) # Fitting the OLSAVS model

summary(mod)

Predictions

OLSAVSPredict: function for predictions for OLSAVS models

preds <- OLSAVSPredict(mod, xtest)

Test root mean square error for OLSAVS

yhatTest <- preds$yhat

RMSE_test_OLSAVS <- sqrt(mean((ytest - yhatTest)ˆ2))

RMSE_test_OLSAVS

####################### Lasso, Ridge, relax, enet #################

Test root mean square error Lasso, Ridge, enet or relax (alpha = 1,

0 or 0.5 respectively. relax Lasso: see below)

for relax Lasso: out <- cv.glmnet(x, y, relax = TRUE)

out <- cv.glmnet(x, y, relax = TRUE)

lam <- out$lambda.min

out_coef <- predict(out, s = lam, type = "coefficients")

33

yfhat <- predict(out, s = lam, newx = xtest)

RMSE_test_l <- sqrt(mean((ytest - yfhat)ˆ2))

RMSE_test_l

########################## End Example ###########################

6 Conclusions

The new method for variable selection, OLSAVS involves applying ordinary least squares to a subset

of predictors selected from a specific variable selection method such as Lasso, relax Lasso, or Elastic

Net. The proposed method is able to maintain the ability of consistency through the low variation

applied from shrinkage methods, while also reducing bias by applying OLS to the predictors selected.

We expected the OLSAVS to reduce the bias in the regression coefficients introduced by the shrinkage

method and lead to the model being close-fitting while keeping the consistency of the reduced variance

from the shrinkage method. Simulation results show that the OLSAVS method not only reduced the bias

of the regression coefficient but also further reduced the variance of the estimates.

Furthermore, the OLSAVS method performs well in terms of predictions error as well. As discussed

in section 3.2, the test root mean square errors when using OLSAVS for all error types studied are

either significantly low or equal to the competing shrinkage method. It is interesting to notice that the

prediction accuracy drastically decreases as the correlation between the predictors increases when using

commonly used shrinkage methods. Prediction accuracy decreases further with number of non-trivial

predictors. OLSAVS method outperformed the other shrinkage studied in both of above mentioned

scenarios and produced much lower test root mean square error values. Lastly, when applied to the real

world example of the Wisconsin nursing home data set, the method shows its usefulness by resulting in

the lowest observed model accuracy values. Hence, this concludes that OLSAVS does have practically

in variable selection techniques and is reliable for multiple error distributions.

34

References

[1] Robert Tibshirani Daniela Witten Gareth James Trevor Hastie, An introduction to statistical learning : with applications

in R, New York : Springer, [2013] ©2013, 2013.

[2] Trevor Hastie, Robert Tibshirani, and Martin Wainwright, Statistical learning with sparsity: The lasso and generaliza-

tions, Chapman amp; Hall/CRC, 2015.

[3] Arthur E. Hoerl and Robert W. Kennard, Ridge Regression: Biased Estimation for Nonorthogonal Problems, Technomet-

rics 12 (February 1970), no. 1, 55–67 (en).

[4] Michael H. Kutner (ed.), Applied linear statistical models, 5th ed, The McGraw-Hill/Irwin series operations and decision

sciences, McGraw-Hill Irwin, Boston, 2005 (en).

[5] Nicolai Meinshausen, Relaxed lasso, Computational Statistics Data Analysis 52 (200709), 374–393.

[6] R Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna,

Austria, 2020.

[7] Robert Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society: Series B

(Methodological) 58 (1996), no. 1, 267–288.

[8] Lasanthi C. R. Pelawa Watagoda and David J. Olive, Comparing six shrinkage estimators with large sample theory and

asymptotically optimal prediction intervals, Statistical Papers (June 2020) (en).

[9] Shanika Wickramasinghe, Bias & Variance in Machine Learning: Concepts & Tutorials (en-US).

[10] Hui Zou and Trevor Hastie, Regularization and variable selection via the elastic net, Journal of the Royal Statistical

Society: Series B (Statistical Methodology) 67 (April 2005), no. 2, 301–320 (en).

35

Appendices

A R Package

###

To load this library: use source("https://hasthika.github.io/olsvspack.txt")

Need library(ggplot2), library(leaps)

###

olsafterlrsim <- function(n = 10, p = 4, k = 2, nruns = 100, eps = 0.1,

shift = 9, psi = 0.0, type = 1, alpha = 0.05,

pitype = 1){

Needs library(glmnet). Does Lasso, RR or Relaxed Lasso.

##slow 10 fold CV,

Simulates RMSE for lasso if pitype = 1, Ridge regression if

pitype = 0, ralxed lasso for pitype = 2.

1 <= k <= p-1, k is the number of nonnoise variables

Uses five iid error distributions:

type = 1 for N(0,1) errors, 2 for t5 errors, 3 for exp(1) - 1 errors

4 for uniform(-1,1) errors, 5 for (1-eps) N(0,1) + eps N(0,(1+shift)ˆ2)

errors.

constant = 1 so there are p = q+1 coefficients

need p > 1, beta = (1, 1, ..., 1, 0, ..., 0) with k+1 ones, p k-1 zeroes

Multiply x by A: for MVN data this results

36

in a covariance matrix with eigenvector c(1, ..., 1)ˆT

corresponding to the largest eigenvalue. As psi gets

close to 1, the data clusters about the line in the

direction of (1, ..., 1)ˆT. See Maronna and Zamar (2002).

cor(X_i,X_j) = [2 psi +(q-2)psiˆ2]/[1 + (q-1)psiˆ2], i not = j

when the correlation exists.

set.seed(974) ##need p>2

e_lr <- rep(NA, nruns)

e_ols <- rep(NA, nruns)

RMSE_lr <- 0

RMSE_ols <- 0

ols_coef2 <- rep(0, p)

ols_coef_sum <- rep(0, p)

lr_coef_sum <- rep(0, p)

ols_coef_avg <- rep(0, p)

lr_coef_avg <- rep(0, p)

q <- p-1

rho <- (2*psi + (q-2)*psiˆ2)/(1 + (q-1)*psiˆ2)

A <- matrix(psi,nrow=q,ncol=q)

diag(A) <- 1

b <- 0 * 1:q

37

b[1:k] <- 1 #b[1:0] acts like b[1:1] = b[1]

indx <- 1:n

for(i in 1:nruns) {

x <- matrix(rnorm(n * q), nrow = n, ncol = q)

x <- x %*% A

xf <- rnorm(q) %*% A

if(type == 1) {

y <- 1 + x %*% b + rnorm(n)

yf <- 1 + xf %*% b + rnorm(1)

}

if(type == 2) {

y <- 1 + x %*% b + rt(n, df = 5)

yf <- 1 + xf %*% b + rt(1, df = 5)

}

if(type == 3) {

y <- 1 + x %*% b + rexp(n) - 1

yf <- 1 + xf %*% b + rexp(1) - 1

}

if(type == 4) {

y <- 1 + x %*% b + runif(n, min = -1, max = 1)

yf <- 1 + xf %*% b + runif(1, min = -1, max = 1)

38

}

if(type == 5) {

err <- rnorm(n, sd = 1 + rbinom(n, 1, eps) * shift)

y <- 1 + x %*% b + err

ef <- rnorm(1, sd = 1 + rbinom(1, 1, eps) * shift)

yf <- 1 + xf %*% b + ef

} #make an MLR data set

find the 10 fold CV lasso or Ridge regression model when

pitype == 1 || pitype == 0

if(pitype == 1 || pitype == 0){

out<-cv.glmnet(x, y, alpha = pitype)

lam <- out$lambda.min

out_coef <- predict(out,s = lam, type = "coefficients")

yfhat <- predict(out ,s = lam, newx = xf)

}

find the 10 fold CV Relaxed lasso model when pitype == 2

if(pitype == 2){

rel_fit <- cv.glmnet(x, y, relax = TRUE)

lam <- rel_fit$lambda.min

out_coef <- predict(rel_fit, s = lam, type = "coefficients")

yfhat <- predict(rel_fit, s = lam, newx = xf)

39

}

Filter out the non-zero coefficients

non_zero_indx <- which(out_coef[-1] != 0)

x_ols <- x[, non_zero_indx]

ols_mod <- lm(y˜x_ols) # Apply OLS on the selected predictors

ols_coef <- ols_mod$coefficients

For comparisons of coefficients

non_zero_coef_indx <- which(out_coef != 0)

ols_coef2[non_zero_coef_indx] <- ols_coef

xf_ols <- xf[, non_zero_indx]

xf_ols <- append(xf_ols, 1, after = 0) # modified xf so it

will work with ols

yfhat_ols <- xf_ols %*% ols_coef

e_lr[i] <- (yf - yfhat)ˆ2

e_ols[i] <- (yf - yfhat_ols)ˆ2

Compare coefficients

40

ols_coef_sum <- ols_coef2 + ols_coef_sum

lr_coef_sum <- out_coef + lr_coef_sum

}

TRMSEs

RMSE_lr <- sqrt(sum(e_lr)/nruns)

RMSE_ols <- sqrt(sum(e_ols)/nruns)

Coef avgs

ols_coef_avg <-ols_coef_sum/nruns

lr_coef_avg <- lr_coef_sum/nruns

Minkowski distance

diff_ols <- (sum((abs(append(b, 1, after = 0)

ols_coef_avg))ˆp))ˆ(1/p) # Sum of the absolute differences

between b and new ols coefficients estimates

diff_lr <- (sum((abs(append(b, 1, after = 0) - lr_coef_avg))ˆp

))ˆ(1/p) # Sum of the absolute differences between b and l or r

coefficients estimates

list(RMSE_ols = RMSE_ols, RMSE_lr = RMSE_lr, diff_ols=diff_ols,

diff_lr=diff_lr)

41

}

###

olsafterlrsimplots <- function(n = 50, p = 4, k = 2, nruns = 100, eps = 0.1,

shift = 9, psi = 0.0, type = 1, alpha = 0.05,

pitype = 1){

Needs library(glmnet). Does lasso, RR or Relaxed lasso

simulations and produces a sid-by-side boxplot.

##slow 10 fold CV,

Simulates RMSE for lasso if pitype = 1, Ridge regression if

pitype = 0, ralxed lasso for pitype = 2.

1 <= k <= p-1, k is the number of nonnoise variables

Uses five iid error distributions:

type = 1 for N(0,1) errors, 2 for t3 errors, 3 for exp(1) - 1 errors

4 for uniform(-1,1) errors, 5 for (1-eps) N(0,1) + eps N(0,(1+shift)ˆ2)

errors.

constant = 1 so there are p = q+1 coefficients

need p > 1, beta = (1, 1, ..., 1, 0, ..., 0) with k+1 ones, p-k-1 zeroes

Multiply x by A: for MVN data this results

in a covariance matrix with eigenvector c(1, ..., 1)ˆT

corresponding to the largest eigenvalue. As psi gets

close to 1, the data clusters about the line in the

direction of (1, ..., 1)ˆT. See Maronna and Zamar (2002).

42

cor(X_i,X_j) = [2 psi +(q-2)psiˆ2]/[1 + (q-1)psiˆ2], i not = j

when the correlation exists.

set.seed(974) ##need p>2

e_lr <- rep(NA, nruns)

e_ols <- rep(NA, nruns)

RMSE_lr <- 0

RMSE_ols <- 0

ols_coef2 <- rep(0, p)

ols_coef_sum <- rep(0, p)

lr_coef_sum <- rep(0, p)

ols_coef_avg <- rep(0, p)

lr_coef_avg <- rep(0, p)

q <- p-1

rho <- (2*psi + (q-2)*psiˆ2)/(1 + (q-1)*psiˆ2)

A <- matrix(psi,nrow=q,ncol=q)

diag(A) <- 1

b <- 0 * 1:q

b[1:k] <- 1 #b[1:0] acts like b[1:1] = b[1]

indx <- 1:n

43

for(i in 1:nruns) {

x <- matrix(rnorm(n * q), nrow = n, ncol = q)

x <- x %*% A

xf <- rnorm(q) %*% A

if(type == 1) {

y <- 1 + x %*% b + rnorm(n)

yf <- 1 + xf %*% b + rnorm(1)

}

if(type == 2) {

y <- 1 + x %*% b + rt(n, df = 3)

yf <- 1 + xf %*% b + rt(1, df = 3)

}

if(type == 3) {

y <- 1 + x %*% b + rexp(n) - 1

yf <- 1 + xf %*% b + rexp(1) - 1

}

if(type == 4) {

y <- 1 + x %*% b + runif(n, min = -1, max = 1)

yf <- 1 + xf %*% b + runif(1, min = -1, max = 1)

}

if(type == 5) {

err <- rnorm(n, sd = 1 + rbinom(n, 1, eps) * shift)

y <- 1 + x %*% b + err

44

ef <- rnorm(1, sd = 1 + rbinom(1, 1, eps) * shift)

yf <- 1 + xf %*% b + ef

} #make an MLR data set

find the 10 fold CV lasso or ridge regression model when

pitype == 1 || pitype == 0

if(pitype == 1 || pitype == 0){

out<-cv.glmnet(x, y, alpha = pitype)

lam <- out$lambda.min

out_coef <- predict(out,s = lam, type = "coefficients")

yfhat <- predict(out ,s = lam, newx = xf)

}

find the 10 fold CV Relaxed lasso model when pitype == 2

if(pitype == 2){

rel_fit <- cv.glmnet(x, y, relax = TRUE)

lam <- out$lambda.min

out_coef <- predict(rel_fit, s = lam, type = "coefficients")

yfhat <- predict(rel_fit, s = lam, newx = xf)

}

Filter out the non-zero coefficients

45

non_zero_indx <- which(out_coef[-1] != 0)

x_ols <- x[, non_zero_indx]

ols_mod <- lm(y˜x_ols) # Apply OLS on the selected predictors

ols_coef <- ols_mod$coefficients

For comparisons of coefficients

non_zero_coef_indx <- which(out_coef != 0)

ols_coef2[non_zero_coef_indx] <- ols_coef

xf_ols <- xf[, non_zero_indx]

xf_ols <- append(xf_ols, 1, after = 0) # modified xf so it

will work with ols

yfhat_ols <- xf_ols %*% ols_coef

e_lr[i] <- (yf - yfhat)ˆ2

e_ols[i] <- (yf - yfhat_ols)ˆ2

Compare coefficients

ols_coef_sum <- ols_coef2 + ols_coef_sum

lr_coef_sum <- out_coef + lr_coef_sum

}

46

Plot TRMSEs

rmses <- data.frame(TRMSE = c(e_lr, e_ols), Method =

c(rep("Other", nruns), rep("OLSAVS", nruns)))

rmsePlot <- ggplot(data = rmses, aes(x= Method, y = TRMSE, fill

= Method)) + geom_boxplot() + theme_bw()

TRMSEs

RMSE_lr <- sqrt(sum(e_lr)/nruns)

RMSE_ols <- sqrt(sum(e_ols)/nruns)

Coef avgs

ols_coef_avg <-ols_coef_sum/nruns

lr_coef_avg <- lr_coef_sum/nruns

#nroot <- length(ols_coef_avg)

Minkowski distance

diff_ols <- (sum((abs(append(b, 1, after = 0) -

ols_coef_avg))ˆp))ˆ(1/p) # Sum of the absolute differences

between b and new ols coefficients estimates

diff_lr <- (sum((abs(append(b, 1, after = 0) - lr_coef_avg))ˆp

))ˆ(1/p) # Sum of the absolute differences between b and l or r

47

coefficients estimates

list(RMSE_ols = RMSE_ols, RMSE_lr = RMSE_lr, diff_ols=diff_ols,

diff_lr=diff_lr, rmsePlot = rmsePlot)

}

OLSAVS <- function(x, y, method){

OLSAVS des the OLSAVS method

Needs library(glmnet).

need x as a model.matrix

y - matrix of predictors

y - response

Method - lasso, RR, Enet or Relaxed lasso (method = 1, method

= 0, method = 0.5 or method = 2)

10 fold CV

find the 10 fold CV lasso or ridge regression or enet model

when method == 1 || method == 0 || method == 0.5

if(method == 1 || method == 0 || method == 0.5){

out<-cv.glmnet(x, y, alpha = method)

lam <- out$lambda.min

out_coef <- predict(out,s = lam, type = "coefficients")

48

#yfhat <- predict(out ,s = lam, newx = xf)

}

find the 10 fold CV Relaxed lasso model when method == 2

if(method == 2){

rel_fit <- cv.glmnet(x, y, relax = TRUE)

lam <- rel_fit$lambda.min

out_coef <- predict(rel_fit, s = lam, type = "coefficients")

#yfhat <- predict(rel_fit, s = lam, newx = xf)

}

Filter out the non-zero coefficients

non_zero_indx <- which(out_coef[-1] != 0)

x_ols <- x[, non_zero_indx]

ols_mod <- lm(y˜x_ols) # Apply OLS on the selected predictors

ols_coef <- ols_mod$coefficients

outPut <- list(ols_mod = ols_mod, ols_coef = ols_coef, out_coef = out_coef)

outPut$ols_mod

}

49

###

OLSAVSPredict <- function(model, newx){

Does predictions for OLSAVS

xtest <- newx

mod <- model

names(mod$coefficients) = gsub(pattern = "x_ols", replacement =

"", x = names(mod$coefficients))

xtest1 <- xtest[, names(mod$coefficients[-1])] # good

newxtest <- cbind(rep(1, nrow(xtest1)), xtest1) # Added a column

of ones to make xtest a design matrix

yhatTest <- newxtest %*% as.matrix(mod$coefficients)

pred <- list(yhat = yhatTest)

pred

}

##################### Example #################################

50

library(ISLR)

library(lars)

data(Auto)

#set.seed(1111)

##################### Splitting and preparing data ##################

train = sample(c(TRUE, FALSE), size = 0.7*nrow(Auto), replace = TRUE)

test <- (!train)

xtrain <- model.matrix(mpg˜., Auto)[train,]

xtest <- model.matrix(mpg˜., Auto)[test,]

ytrain <- Auto$mpg[train]

ytest <- Auto$mpg[test]

y <- ytrain

x <- xtrain

##################### Applying OLSAVS ##############################

#Method - lasso, RR, Enet or Relaxed lasso (method = 1, method =

51

0, method = 0.5 or method = 2)

mod <- OLSAVS(x, y, method = 0.5) # Fitting the OLSAVS model

mod

summary(mod)

Predictions

preds <- OLSAVSPredict(mod, xtest) # OLSAVSPredict: separate

function for predictions

Test root mean square error for OLSAVS

yhatTest <- preds$yhat

RMSE_test_OLSAVS <- sqrt(mean((ytest - yhatTest)ˆ2))

RMSE_test_OLSAVS

####################### lasso, ridge, relax, enet #####################

Test root mean square error lasso, ridge, enet or relax (alpha

= 1, 0, 0.5, relax: see below)

for relax lasso: cv.glmnet(x, y, relax = TRUE)

out<-cv.glmnet(x, y, alpha = 0.5)

lam <- out$lambda.min

out_coef <- predict(out, s = lam, type = "coefficients")

yfhat <- predict(out, s = lam, newx = xtest)

52

RMSE_test_l <- sqrt(mean((ytest - yfhat)ˆ2))

RMSE_test_l

########################## End Example ############################

53

